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To describe the behavior of bluff body fluid-elastic motions, analysts must in practice
resort to empirical models based on a limited number of measured fluid-elastic behavior
characteristics. To our knowledge the question of whether such models can predict reliably
the actual occurrence of chaos has not yet been addressed. With a view to answering this
question in a specific case, we present an exploratory experimental and numerical study of
two paradigmatic fluid-elastic systems: (1) a single galloping square prism; and (2) a pair
of elastically coupled galloping prisms which can exhibit apparently chaotic behavior of
interest from a structural engineering viewpoint. We review various conventional empirical
models and their capabilities, and develop a model that incorporates information on the
dependence on angle of attack of the vortex-induced lift coefficient and the Strouhal number
for the stationary prism. For appropriate values of the adjustable parameters and initial
conditions, this model appears to be able to describe observed behavior at least qualita-
tively. However, the predictive capabilities of the model are poor, especially for apparently
chaotic behavior. A possible approach to improving the reliability of the numerical detec-
tion of such behavior is suggested.

1. INTRODUCTION

Experience shows that as novel, increasingly daring types of structures etherge, they may
be affected by unsuspected forms of undesirable behavior. Cast iron column buckling
before Euler and suspension bridge flutter 50 years ago are cases in point. As compliant
structures are built in increasingly deeper waters and exhibit increasingly strong non-
linearities, there is concern that they may be affected by undesirable fluid-elastic behavior,
including chaotic behavior [1-3). Thus recent progress in dynamical systems theory has
stimulated interest in the chaotic behavior of compliant offshore structures, or elements
thereof, and of other fluid-elastic systems [3-8].

In offshore structures the oscillating bodies are bluff, and if flow separation effects are
significant the fluid-elastic loads can seldom in practice be obtained by solving the Navier-
Stokes equations. For this reason the analyst is forced to resort to empirical models.
Chaotic dynamics studies of blufl body fluid-elastic systems quoted earlier do not include
comparisons between results of empirical modeling and experiment. Thus, the question of
whether empirical fluid-elastic models can predict reliably the actual occurrence of motions
that are or appear to be chaotic remains open.

The purpose of this paper is to address this question in a specific case. To this end we
conducted an exploratory experlmental and numerical study of the two simple bluff body
fluid-elastic systems shown in Figure 1, referred to for brevity as the single and the double
oscillator. The systems were chosen on account of their interesting dynamic behavior, of
their relative simplicity compared to the well-known case of the circular cylinder (from

45

0022-460X /92/070045 +22 $03.00/0 © 1992 Academic Press Limited



46 E. SIMIU AND G. R. COOK

(a) (b)

Figure 1. Schematic of (a) single oscillator and (b) double oscillator.

which they differ by having fixed separation points), and of the relative ease and low cost
of their physical testing. In both systems the prisms experience galloping and vortex-
induced oscillations transverse to the mean flow. We describe the experimental set-up and
present typical experimental results. In the case of the double oscillator these results
reveal an interesting form of apparently chaotic fluid-elastic behavior. We then address the
modeling issue. The equations of motion for the single oscillator are presented first. We
then review briefly empirical fluid-elastic models proposed in the literature [10-17] and
assess them in the light of our experimental results. We develop an alternative model which
accounts for the dependence on angle of attack of the Strouhal number and the vortex-
induced lift for the stationary prism, and thus makes it possible naturally to couple the
equation of motion of the prism and the lift oscillator equation yielding the vortex-induced
lift. We assess the performance of our fluid-elastic model in the single oscillator case. We
then present the equations of motion for the double oscillator, apply our fluid-elastic
model in this case, and comment on its descriptive and predictive capabilities.

2. DESCRIPTION OF EXPERIMENTS

The experiments were performed in the 12 in (0-3048 m) diameter water tunnel of the
David Taylor Research Center, Bethesda, Maryland (Figure 2). The square prisms were
tested at about 0-3 m downstream from the entrance nozzle. At that location the flow is
uniform (with turbulence intensity of approximately 1-2%) over a 0-32 m diameter circular
area concentric with the nozzle. The nominal flow speed readings were calibrated using
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Figure 2. Schematic longitudinal cross-section of test chamber.
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measurements with the experimental device in place. Within a few centimeters outside of
the uniform flow area the flow within the test chamber is approximately quiescent. The
single oscillator prism was placed at the center of the circular area. For the double oscillator
the distance between the axis of each prism and the center of the circular area was about
50 mm. The prisms were made of solid steel or solid aluminium. Their sides and lengths
were: for prism 1 (steel), A=6-35 mm, L =215 mm; for prism 2 (aluminium), A=6-35 mm,
L =230 mm; and for prism 3 (aluminium), =127 mm, L=215 mm.

Plastic 20 mm diameter, 1/4 mm thick end plates were fitted to the prisms, Threaded
steel rods with diameter d,=2 mm and a clear length L.=60 mm were screwed into the
centers of the end faces of the prisms. The springs were connected by small aluminium
connectors to these rods, and were thus located within the approximately quiescent zone
of the test chamber. Gage 28 (d. = 0-328 mm diameter) brass drag wires with length r=
400 mm were used to tie the 2 mm rods to screws protruding from adjustable brackets.
The drag wires moved in vertical planes at all times and were nearly horizontal when the
prisms were at rest (Figure 1). Measurements showed that the damping ratio in air was
B.i»=0-005%. The total mass of one prism and its appurtenances was 0-074 kg for the
steel prism with 6-35 mm sides, 0-033 kg for the aluminium prism with 6-35 mm sides, and
0-101 kg for the aluminium prism with 12:7 mm sides. Time histories of the motion were
obtained by connecting the fixed ends of the top and bottom springs to cantilevered
aluminium bars provided with strain gages. Data were acquired at a 500/s sampling rate.

3. TYPICAL EXPERIMENTAL RESULTS

3.1. SINGLE OSCILLATOR

Typical displacement time histories for the single oscillator are shown in Figure 3 (alu-
minium bar, £=12-7 mm, total spring constant k=127 N/m, upper spring mass m,=
14 g, lower spring mass m,=14 g, flow speeds V=0-92m/s (a) and V=2-62m/s (b),
respectively) and Figure 4, (steel bar, A=6-35mm, k=70 N/m, m,=5g, m=5g, V=
0:91 m/s (a) and V'=1-77 m/s (b), respectively). All observed motions, including those of
Figures 3 and 4, exhibited amplitude modulation.

3.2. DOUBLE OSCILLATOR

Typical displacement-time histories for the double oscillator are shown in Figures
5(a, b, ¢) (aluminium bars, #=6-35 mm, top spring constant k; =56 N/m, lower spring
constant k,=78 N/m, coupling spring constant k;;=145N/m, m,=10g, m;=7g, m.=
4g, V=091m/s, V=1-3dm/s and V=1-77 m/s, respectively). For clarity we show in
Figures 5(a, b, ¢) only the motions of the top prism. In Figure 5(d) are shown the motions
of both the top and the bottom prisms for a § s interval of Figure 5(c).

In Figure 5(a) the top and bottom prisms oscillate in phase at all times. This is typical
and velocities lower than a critical velocity V... Column 7 of Table 1 shows the observed
values V,, corresponding to various sets of system parameters. Note that for cases 1 and
2 the ratios (k;)\/(k;); (i=1, 2, 12) and the respective masses, m, are approximately the
same. Therefore, as required by similarity, so are the respective non-dimensional ratios
Vce/[h(ki/m)'/z]-

Figures 5(b, c) are typical of oscillations occurring for V> V,,: two oscillatory forms
alternate spontaneously, one in which the two prisms move in phase, the other in which
they move in opposite phases (Figure 5(d)). These motions are reminiscent of the irregular
alternation among different oscillatory forms in the chaotic motion of the forced buckled
column (i.e., the alternation among oscillations about the stable fixed points and the
unstable fixed point of the unforced column) [21, 22]. The motions are highly irregular,
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Figure 3. Observed response of single aluminium prism (2#=0-0127m, aluminium): (a) V=092 m/s;
(b) V=2-62m/s.

and for any given system the average interval between successive alternations decreases as
the flow velocity increases. To characterize the motions we considered Poincaré plots
obtained by intersecting the orbit with the surface of section y, =0, j, <0, where , is the
velocity of the top prism. These plots map maximum displacements of the top prism vs.
their immediate antecedents. If the motion was periodic with n local maxima per period,
or if it was quasi-periodic, the Poincaré plots would consist, respectively, of n points or of
a dense set of points on a curve (surrounded in both cases by small clouds due to noise).
Instead, as shown typically by Figure 6, which corresponds to the record partially depicted
in Figure 5(c), points are spread out in large clouds (except for those lying near the
bisector, which represent nearly equal successive displacement maxima, €.g., maxima near
{=86 s and 1=_88 s in Figure 5(c)). This suggests that the motions are neither periodic nor
quasi-periodic. We also found that the spectral density functions for these motions contain
significantly higher broadband components than motions such as those of Figure 5(a).
Motions such as those of Figures 5(b, ¢) thus appear to be chaotic, a point to be furthe:
discussed subsequently. . '

Fractal dimension calculations applied to the experimental data would be useful for
confirming this assumption [18]. Unfortunately, as is the case for Lyapounov exponent:
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Figure 4. Observed response of single prism (=0-00635m, steel): (a) V=091 m/s; (b) V=1-77Tm/s.

[19], it appears that at present such calculations cannot be performed with confidence for
experimental systems with, say, eight or more phase space dimensions, see, e.g., reference
[20, p. 13].

3.3. FLOW VISUALIZATION

The wake flow was visualized by using a 4 W vertical laser light sheet passing through
the mid-span of the galloping bars. Fluorescein dye was pumped from a reservoir through
feed tubes which released the dye near the light sheet at the mid-height of the upstream
faces of the prisms. A high-speed video tape recorder was used to record images of up to
250 frames per second. For the double oscillator the image of the wake tends to be less
clear for the lower prism owing to flow pollution by the dye. In addition, the upper prism
casts a shadow on to the wake of the lower prism.

In Figure 7 (aluminium bars, A=6-35 mm, k=53 N/m, k,=61 N/m, k;,=80 N/m,
m,=17g, m=6g, m.=>5gand V=0-85m/s) are shown typical visualizations of the wake
of the upper prism at successive intervals of duration 15/250 =0-06 s, equal to the average
interval between the shedding of successive vortices. The vortex shedding frequency, »;,
appears to be approximately independent of the oscillatory motion and of whether or not



50 E. SIMIU AND G. R. COOK

6-02 T T T T
{a)

0-01

0-00

———

: -0:01

_0-02 ! ! ] i

0-02

" Displacement (m}

0-0f

Figure 5. Observed response, double oscillator (h, =#,=0-00635m, aluminium prisms): (a) top prism, V=
0-91 m/s; (b) top prism, ¥=1-34m/s; (c) top prism, V=1-77m/s; (d) top prism (solid line), bottom prism
(dotted line), V=1-77m/s.

alternation between oscillatory forms occurs. Since
n,=SV/h, n

where S is the Strouhal number, Figure 7 is approximately consistent with an average
value §~0-00635/0-060/0-850-1245, vs. 0-125, as reported in references [30, 31]. Flow
visualizations for the single oscillator yielded similar results.

In Figure 8 are shown typical wakes of the upper and lower prism for the same set-up
as in Figure 7, suggesting that the vortex shedding in the wake of the two prisms occurs
either approximately in phase (Figure 8(a)) or in approximately opposite phases
(Figure 8(b)).

4. EQUATION OF MOTION FOR SINGLE OSCILLATOR
For the single oscillator of Figure 1(a), the equation of motion is written as
D(y)=mj+cp+k,y+1pCaAply| = 2phLVIC,=0, 2)

where m=m,+m,, and my and m, are the body mass and the added mass, respectively,
and c is the viscous damping coefficient. The effective restoring force &,y is the sum of the
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(b)
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Figure 7. Flow visualization, top prism, double oscillator. Wakes at times: (a) 465/250s; (b) 480/250s;
(c) 495/250 s; (d) 510/250s. N

spring restoring force and the vertical component of the tension in the drag wires:
k,y=ky+:pCohLV7y/(P =)', ©)

and V, is the velocity of the flow relative to the prism, i.e., the sum of the mean flow
velocity V and the absolute value of the horizontal component of the velocity of prism:

V,=V+pyl/ (P =y “

The second term in equation (4) is obtained by differentiating with respect to time the
horizontal displacement of the oscillator due to the drag wire constraint,

x=r—(r=y)"% &)

It may be assumed that the drag coefficient Cp=2-0 (see, e.g., reference [16, p. 152]).
Calculations showed that even relatively large deviations from that value (say, 30% or
more) usually had no significant effects on the results. The fourth term on the left side of
equation (2) is the drag force in the Morison equation for the threaded rods at the ends
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(a) (b)
Figure 8. Wakes of top and of bottom prism: (a) vortex shedding of the two prisms occurring nearly in phase;
(b) in nearly opposite phases.

of the prism and the drag wires; C, is a Morison equation drag coefficient and 4 is the
total projected area of the rods. C, is the total lift force coefficient.

Using the notations U= V/(Qh), Q=(k/m)'?, 1=81, 2B=c/(mQ), Y=y/h, N=
1ph*L/m, and dividing equation (2) through by kh, we obtain the non-dimensiona! form

Y"+2BY' +[1+ CoNUY/(P /K = Y?)'?1Y+ NCAA/hL)Y'|Y'| = NUIC,=0, (6)
U =U{1 +|YY'/[UC? /R~ Y?)' 7]} 0]

Calculations showed that for our experiments the second term between brackets in equa-
tion (7) is typically in the range 0-01-0-05.

To define the equations of motion completely it is necessary to provide models for the
added mass, the drag forces on the circular cylinders and the drag wires, and the total lift
force coefficient C,. These models are discussed in Appendices I and II.

5. NUMERICAL RESULTS FOR SINGLE OSCILLATOR

We first note that, with almost no exception, the results of the calculations were insensi-
tive to changes within appropriate limits of the parameters B and C,.

According to reference [10], the result of modeling the lift empirically for a single
oscillator is that “some of the information about the system is lost”. We present a few
time histories, obtained numerically, that confirm this observation.

5.1. PARKINSON-SMITH MODEL WITH HARMONIC FORCING

We first show typical results obtained by using equations (2) and (A3). The phase space
dimension in this case is three. It was shown in reference [23] that the behavior of a similar
oscillator (with A=0and V,=V) has similarities with the behavior of the standard circle
map. Thus, if the forcing amplitudes exceed certain frequency-dependent critical values,
chaotic motions may occur. Otherwise, the motions are periodic or quasi-periodic, and
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are organized in accordance with the Arnold tongue pattern [4, 23-25]. The motion pat-
terns are thus strictly controlled by the nature of equations (2) and (A3). For any given
set of parameters it may therefore be expected that those patterns will be different from
those inherent in the actual system, the phase space of which does not have three but
infinitely many dimensions (or a finite but relatively large number of effective dimensions).
This is borne out by comparisons between Figures 3, 4 and their numerical counterparts,
for which the parameters m, and C,,, yielding the most satisfactory agreement with the
observed motions were each arrived at after tens of trials and simulations. We show the
numerical counterpart of Figure 3(a) in Figure 9(a) (m=0-23kg, C,.=1-3), and the
counterpart of Figure 4(a) in Figure 10 (im=0-1, Ca,=0-9). Similar results were obtained
for the numerical counterparts of Figure 3(b) (m=0-23 kg, C,.,=0-3) and Figure 4(b)
. (m=0-1kg, C,,=1-3), although in the latter case the amplitude modulation was smaller
~ and the peak displacement slightly larger than for the observed motion.
" The motion of Figure 9(a) is chaotic. This is suggested by the foldings of the Poincaré
plot of Figure 9(b) (see, e.g., references [4 p. 93, 23, 24, 25 p. 178)]), and is confirmed by
the positive Lyapounov exponent (/= 2-4), calculated as in reference [25, p. 129] by follow-
ing in time the difference between two solutions of the equations of motion, the initial
conditions of which for y differ by, say, 0-1%. For ¥=0-90 m/s the motion becomes quasi-
periodic. We note in passing that in this and many other cases chaotic and quas.-periodic
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Figure 9. (a) Numerical simulation, single prism (2=0-0127 m, aluminium), ¥'=0-92m/s, harmonic lift
model; (b) Poincaré plot corresponding to record partly shown in Figure 9(a).
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Figure 10. Numerical simulation, single prism (1=0-00635 m, steel), ¥=0-91 m/s, harmonic lift model.

motions are difficult to distinguish unless fairly elaborate tests are used. Thus, the fact that
a motion is chaotic rather than, say, quasi-periodic is not necessarily in itself of significance
from a structural engineering viewpoint.

5.2. PROPOSED LIFT OSCILLATOR

We now present a few typical results obtained by using equations (A4) and (A1) in
conjunction with equation (2) and the assumption §=0. This system has phase space
dimension 4. The results show that, as for equations (2) and (A3), inherent in the system
are oscillatory forms that can differ significantly from the observed ones, which are gov-
erned by the Navier-Stokes equations.

The counterpart to Figure 3(a), obtained by using £=0-25"', m=0-22 kg and initial
conditions y(0) =0-01 m, y(0) = C,(0) =0, C,(0) =0-75, yielded a response that was almost
indistinguishable from Figure 9(a). Counterparts to Figure 3(b), obtained by using =
0-1s™', m=0-22 kg, depended on the initial conditions being used. For y(0)=0-01, 3(0)=
C,(0)=0 and C(0)=1-2 (Figure 11(a)), there was no amplitude modulation; the fre-
quency was higher than the observed value (3-7 Hz vs. 3-4 Hz); and the maximum peak
was significantly lower than the observed value (0-033 m vs. 0-047 m). However, for
C(0)=0-3 (Figure 11(b)), the opposite was true, i.e., the frequency was 3-25 Hz and the
peak was 0-049 m. The numerical counterparts to Figure 4(a) (V=0-91 m/s) and Figure
4(b) (V=1-77m/s) were similar to those obtained by using equations (2) and (A3).
However, for V'=1-35m/s, regardless of the parameters m and ¢ and of the initial condi-
tions being tried, no amplitude modulation could be obtained and the calculated steady
state lift force associated with vortex shedding vanished, even though the amplitudes of
the observed motion (not reproduced here) were strongly modulated. We also note that
the use of parameters 6 #0 in our proposed lift oscillator model did not improve the
agreement between observations and numerical results.

We conclude that neither of the two models being tested here produces completely
satisfactory simulations of the observed single oscillator motions. However, for some
engineering purposes, the results may be viewed as acceptable first approximations.

6. EQUATIONS OF MOTION AND LIFT FORCE MODELS FOR
DOUBLE OSCILLATOR

6.1. EQUATIONS OF MOTION

Let y, and y, denote the displacements of the top and bottom prism, respectively (Figure
1(b)). The notations for all parameters (except V') and other quantities pertaining to the
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Figure 11. Numerical simulation, single prism (%=0-0127 m, aluminium), lift oscillator model, V'=2-62m/s:
(a) C(0)=1-2; (b) C,(0)=0-3.

uncoupled top and bottom oscillator are the same as for the single oscillator, except that
they are affected by index 1 and 2, respectively. The corresponding equations of motion
can be written as D,(y,) =0, Dy(y,) =0, where the differential operators D, and D, are the
same as the operator D of equation (2), except for the presence of the indices. The
equations of motion for the double oscillator are then

Di(3) tkia(y1—y2)=0, ®)
Do(y:) +kia(y2—y1)=0. ®

Equations (8) and (9) may be non-dimensionalized in a manner similar to that used to
obtain equation (6), for example by dividing through both equations by K(hy+ h2)/2,
where K= (m, +m2).Qf.

Q].2= (1/2|/2){O'| + O'2:F [(0'] - 0'2)2"‘40'30"4]‘/2} 12 (10)
are the natural frequencies of the associated linear two-degree-of-freedom system and
o1=(k,+di2)/my, 0= (ky+kiz)/m;, o3=kiz/m, os=ky/my. (11)

6.2. LIFT FORCES

The lift force models for each prism are similar to those used for the single oscillator.
However, the observed vortex patterns (see Figure 8, where the vortex shedding on the

-
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top and bottom prism occurs either in phase or in opposite phases) suggest that the fluid
serves as an interaction agent between the lift forces acting on the two prisms. The form
of the proposed lift oscillator equations (equation (A11), with the relevant terms affected
by index 1 and 2, respectively) automatically ensures such interaction. However, one may
add to those equations explicit lift force interaction terms ¢(C,i, C.2, Cots Coz, W14 ¥a2,
1, ¥a2), i=1, 2, respectively. For example, by analogy with the linear coupling model for
the two mass oscillators, one could assume for the lift oscillators the simple coupling model

¢I =—7(27znsl)zcv29 ¢2= —7(27”7:2)2Cvl s ) (12)

where ¥ is a coupling constant; other interaction models could be attempted.

7. NUMERICAL RESULTS FOR DOUBLE OSCILLATOR

7.1. SIMPLE PARKINSON-SMITH MODEL

If the vortex-induced lift force is ignored the total lift force reduces to the simple
Parkinson-Smith model given by equations (Al) and (A2) applied to each prism. It was
found in reference [23] that, if this model is used, the numerical double oscillator is
incapable of experiencing motions of the type shown in Figures 5(b, c). However, beyond
a critical velocity V,, the attractor corresponding to the in-phase motions of the two
prisms disappears, and the only remaining attractor, the domain of attraction of which is
now the whole phase space, corresponds to out-of-phase motions of the two prisms. One
may ask whether there is a correlation between the critical velocity V., beyond which
motions of the type shown in Figures 5(b, ¢) occurred in the experiments (see Table 1)

TABLE 1
Spring constants for double oscillators and critical flow velocities V.. and V,

h ky k2 k, Ve Ves
Case Material (mm) (N/m) (N/m) (N/m) (m/s) (m/s)
¢)) ¥) ) 4) &) (6) Q) (8)

1 Aluminium 6-35 41 61 46 1-02 1-15

2 53 80 61 1-16 1-35

3 56 145 78 1-32 1-90

4 Steel 6-35 55 61 81 1-58 1-10

5 41 61 46 2-21 1-40

6 74 156 84 3-95 2-75

and the critical velocity V... The latter was obtained from calculations in which the nominal
added mass parameter was based on the expression of reference [26], without adjustments
aimed at matching the calculated and the observed oscillation frequencies. The results
showed that the ratio V,/V,. depends on the non-dimensional parameters N; (i=1, 2), k;/
k; and k,/k,,, and on the non-dimensionalized flow velocity, and that for the cases of
Table 1, V,, differed from V,, by about 35% or less. The speed V,, thus provides only a
crude indication on the magnitude of V.

7.2. PARKINSON-SMITH MODEL WITH HARMONIC FORCING

This model, which does not allow for flow-structure interaction, appeared to be incap-
able of yielding motions of the type shown in Figures 5(b, c).
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7.3. PROPOSED LIFT OSCILLATOR MODEL

This model corresponds to an eight-dimensional phase space. We first report results
obtained by assuming §=y=0. For the parameters corresponding to Figures 5(a, b),
Figure 12(a) (¥V=091m/s, m;=0-065kg, m,=0-063kg, & =¢6,=0:045"") and
Figure 12(b) (V=1-34 m/s, m, =0-065 kg, m,=0-063 kg, &, = £,=0-065 s™") show results
of simulations for which the initial conditions were y(0)=0-01, C,(0)=1-0, y(0)=

Cul0)=0 (i=1,2).

Wil

il

¥ adi

qﬂ ,‘

Y ] | I .  nnuul Ml g
T IIHIIIHWW o

Figure 12. Numerical simulation, double oscillator, lift oscillator model (h, =h,=0-00635 m, aluminium
prisms): (a) top prism, V'=0-91 m/s; (b) top prism, ¥=1-34 m/s,

Note that both for ¥'=0-91 m/s (Figure 12(a)) and for V'=1-34 m/s (Figure 12(b)) the
oscillation frequencies are higher for the simulated than for the observed records. In
addition, for the record of Figure 12(b) alternations between the two oscillatory forms
occur on the average at shorter intervals than in its observed counterpart (Figure 5(b)).
The time history of Figure 12(b) is sensitive to initial conditions. This is seen in Figure
13, which shows the evolution with time of an initial separation between two time histories
for which y,(0)=0-01 m and y,(0)=0-0101 m, respectively, all other initial conditions
being the same (see reference [25, p. 129]). The average exponential growth of the initial
separation, the irregular appearance of the time history, the spectral density plot (which
was found to have significant broadband components), and the Poincaré plot (which is
similar to Figure 6) suggest that for the parameters of Figure 12(b) our model may exhibit
low-(eight-)dimensional chaotic behavior. If this were the case it would be permissible to
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Figure 13. Growth of 0-0001 m initial separation with time, V'= 1-34m/s.

assume that this may also be true of observed motions such as those of Figures 5(b, ¢), at
least in some instances.

Time histories similar to those of Figure 12(b) were also obtained numerically by assum-
ing that the lift oscillator coupling parameter y #0, e.g., for V= 1:77 m/s, m; =0-065 kg,
my=0-063 kg, £ =£,=0-5s"', §=0, y=08, and the same initial conditions as for Figure
12. In this case also, the frequencies were higher than the corresponding experimental
values (Figure 5(c)).

As for the single oscillator, by using parameter values & #0 in the above lift oscillator
model we were not able to obtain an improved agreement between calculated results and
observations, either for y =0 or for y #0.

We conclude that, as in the case of the single oscillator, and despite the awesomely rich
bifurcational structure of the system, the proposed model appears to be capable of yielding
definitely imperfect but not altogether unreasonable approximate descriptions of observed
motions. We note, however, that the range of parameters for which motions such as that
of Figure 12(b) could be obtained appears to be extremely narrow.

8. SUMMARY AND CONCLUSIONS

In this paper we report typical results of experiments which confirm the finding, previ-
ously noted in reference [10], that hydroelastic single oscillator galloping generally exhibits
significant amplitude modulation. The experiments revealed an interesting form of fluid-
elastic behavior of the double oscillator, which occurs routinely if the flow speeds exceed
certain values that depend upon the system parameters.

We review and assess existing empirical fluid-elastic models, and propose an alternative
empirical model which incorporates information on the dependence of the Strouhal
number and the vortex-induced lift coefficient on angle of attack. We show typical results
of .numerical calculations aimed at assessing the usefulness of those models. The results
suggest that, despite the unavoidable uncertainties concerning the form of the equation of
motion and the actual parameter values, these models appear to be capable of providing
a definitely imperfect, but by and large not unreasonable, description of observed motions
of the single oscillator. However, there are pitfalls, since inherent in the structure of the
low-dimensional empirical system of differential equations being used are periodicities and
multiple solutions that may not be representative of the behavior of the Navier-Stokes
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equations for the actual system. In particular, it was found that this may lead to predictions
that underestimate the response.

In the case of the double oscillator we found that our proposed lift oscillator model,

which corresponds to a system with an eight-dimensional phase space, also appears to be
capable of describing observed motions (including apparently chaotic behavior), at least
to a first approximation. However, the windows corresponding to such behavior tend to
be quite narrow, i.e., for such behavior to occur the values of the adjustable parameters
must be within a very narrow range. For this reason empirical models available so far,
including ours, cannot predict reliably motions such as those of Figure 5(b, ¢). (Poor
predictive capabilities have also been noted, although not explained, for chaotic fluid-
elastic motions of a streamlined body [27].)
. The shortcomings of empirical fluid-elastic models such as those reviewed or proposed
in this paper are not surprising. Empirical models are constructed by piecing together
disparate pieces of information characterizing certain aspects of fluid-dynamic and fluid-
elastic behavior. This is done within the framework of a partly arbitrary system of differen-
tial equations that includes a deliberately simple (van der Pol) non-linear lift oscillator
equation. Our results suggest that this degree of arbitrariness and the fragmentary informa-
tion used to construct such empirical models can lead to significant differences of structure
between those models on the one hand and the Navier-Stokes equations governing the
actual system on the other. These differences may lead to failure to predict certain types
of behavior.

The apparently chaotic behavior revealed by our experiments thus appears to be an
example of undesirable fluid-elastic oscillation that can easily be missed by conventional
empirical fluid-elastic models. From the viewpoint of structural reliability, this is more
serious than predicting undesirable fluid-elastic behavior; as was done, e.g., in references
[1, 2], when in fact according to experiments none appears to exist.

The mixed performance of conventional empirical models does not exclude the possibil-
ity of developing on their basis more satisfying tools for detecting fluid-elastic chaos or
similar dynamic behavior. A phenomenon that was not accounted for in this paper is that
small flow fluctuations, including fluctuations associated with the three-dimensionality of
the flow, induce random forces on the prisms. In some instances the effect of the fluctua-
tions may be unimportant. However, under certain circumstances these forces may drive
the orbit intermittently from one attractor to the other (“basin hopping”; see, e.g., refer-
ence [28]). Other noise-induced mechanisms could be at work, both for the observed
motions [29, 35-37] and for simulated motions such as those of Figure 12(b) (for which
the chaotic behavior could be induced by numerical noise [38].) One possible approach to
modeling motions such as those of Figure 5(b, ¢) would be to develop a non-autonomous
system by applying to the empirical fluid-elastic equations suitable random excitations,
the nature and magnitude of which might be obtainable in part from systematic measure-
ments of lift forces, such as were attempted in reference [30]. It may be expected that such
an approach could increase the size of the parameter windows to which there corresponds
apparently chaotic behavior, and thus improve the predictive capability of empirical fluid-
elastic models. The potential of this approach appears to be worth exploring given the
current absence of practical alternatives to modeling bluff body fluid-elastic behavior.
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over the length of the wires the vertical velocity varies approximately linearly with distance
from their fixed point. We assume an average value Ca, of the drag coefficient, to be used
throughout the length of the wires. The drag force associated with the Morison equation
for the two wires may be established by integration along the length of the wires. This
yields a total wire drag force D, =2 X 3pd,.rCa.y\y)/3. For the two threaded rods at the
ends of the square prism the drag force is D=2 X 3pd.L.C.ylyl. The fourth term in
equation (6) represents the sum of these two forces provided that C; and A are chosen
appropriately. We used A=2xrxd,/3+2xL.xd =2X 400x0-328/3+2x60%x2=
330 mm?, and various values of C, within the range suggested earlier. As pointed out in
reference [10], hydrodynamic galloping calculations are not affected significantly by even
relatively large uncertainties in the viscous mechanical dissipation. This was confirmed by
numerous calculations performed for various values 0-3< C;<2-0 and 0-01 < <0-02.

APPENDIX II: MODELING OF LIFT FORCES

Since the oscillation amplitudes that we are concerned with are large (y/h>1 or 50),
the along-span correlation of the fluid-elastic forces may be assumed to be close to unity
[16, p. 201]. The fact that, for the double oscillator, the flow adjusts to the oscillations so
that the vortex shedding of the two prisms is strongly coherent (Figure 8) lends additional
support to this assumption.

AllLl. REVIEW OF LIFT FORCE MODELS FOR SINGLE OSCILLATOR

In this section lift force models proposed in the literature are reviewed and discussed.
An alternative model is then presented.

Simple Parkinson-Smith model. Galloping experiments in air (i.e., for small values of
NU?) were reported in reference [9] for Reynolds numbers 4000 < Re <36 000, with no
drag wires and no connecting circular cylinders projecting from the prisms’ ends (i.e., A=
0, V,= V and k,=k). For ratios of vortex shedding frequency to oscillation frequency, n,/
n,, appreciably greater than unity (a restriction that also pertains to this study), the results
of those experiments were shown to be consistent with the assumption that the lift force
is

C=C., (A1)
Co=aiy/V,=bi(3/V.Y +a(3/ VY = di(3/ V), (A2)

where a; =2-69, b, =168, ¢, = 6270, d, =59 900. Unless c2a\V,, the solutions of equations
(2) and (A1) corresponding to any given set of initial conditions are periodic and exhibit
no amplitude modulation.

Parkinson-Smith model with harmonic forces. For relatively large N U? (typically for
oscillations in water as opposed to air), the experiments of reference [10] as well as ours
showed that equation (A1) is inadequate. Indeed, our calculations showed that equation
(A1) could not account for the observed amplitude modulations.

Assuming S=0-125 [31, 32}, for Figure 3(c), equation (1) yields n,~9-1 Hz, whereas
n,=3-4 Hz. In this case the ratio n,/n,=2-7. This ratio is considerably larger in all other
cases. The inadequacy of the Parkinson-Smith model is thus not attributable to small
ratios n,/n,. Nor is it attributable to differences in Reynolds numbers (Re= 10°Vh), since
for Figure 3 these vary between 5800 and 33 300, i.e., well within the range covered by the
measurements of reference [9]. Therefore, to account for the amplitude modulations,
alternative models are required. These should reflect the effect of the excitation due to
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APPENDIX I: MODELING OF ADDED MASS, AND OF DRAG FORCES ON
ANCILLARY PARTS

Al.l. BODY AND ADDED MASS

The total body mass m, includes the mass of the prism and its appurtenances, and the
tributary mass of the springs attached to it. The added mass m, includes the added mass
for the prism and the inertial term in the Morison equation for the threaded rods and the
drag wires. Assuming that the added mass coefficient for circular cylinders is of the order
of unity, this Morison inertial term is of the order of pl(2 x 0-4 x 0-000328% x 0-785)/
2+2 % 0-06 x 0-002% x 0-785] j=p x 3-8 x 107%. (The factor 3 in the first term of the
square bracket is the result of averaging the vertical acceleration over the length of the
wires assumed to be straight.) In still fluid the added mass term for a square prism is
1-1885ph2Ly [26, p. 145]. If we used this value the total added mass effect would be
m, = ph>Lj(1-1885+3-8 x 107¢/h’L). We would thus have m,~0-015 kg for the 6-35 mm
prisms, and m,~0-045 kg for the 12:7 mm prisms. However, as was observed in reference
[10], the use of added mass corresponding to still water conditions can lead to a significant
underestimation of the oscillation frequencies. This was confirmed by our results. The
added mass must therefore be determined empirically to match the observed oscillation
frequencies.

AlL2. DRAG FORCES ON CIRCULAR CYLINDERS AND DRAG WIRES

There appears to be little information on the coefficient C, (see equation (2)) for body
oscillations in the presence of a relatively large mean speed. Extrapolations from available
data suggest that 0-3 < C;<2-0 is a reasonable assumption [12]. Observations showed that
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vortex shedding. For example, since the vortex shedding appears to be nearly periodic
with the period given by equation (1), it may be assumed that, approximately,

C,=Cp+ Cym cos (27n,1). (A3)

(Or, using equation (1), C,=Cp+ C,n cos (2nUS7).) We refer to equation (A3) as the
Parkinson-Smith mode! with added harmonic forcing. To attempt to match the calculated
and observed motions, appropriate values must be tried for the parameters m, and Cy,.
Alternatively, if the appropriate information were available, the second term on the right
side of equation (A3) could be replaced by a sum of terms, possibly with phase angles
obtained by Monte Carlo simulation, to account for the fact that the spectral density of
the lift associated with vortex excitation has a finite bandwidth.

Equation (A3) does not allow for flow-structure interaction since C,. is constant. It is
nevertheless useful for suggesting that, as was done in reference [9], the vortex shedding
excitation may be neglected if NU? is small. Indeed, according to calculations based on
equations (2) and (A3), for the parameter ranges of reference [9] the effect on the motion
of using equation (A3) instead of equation (A1) is imperceptible. This is true even if the
values assumed for C,,, are unrealistically large (e.g., up to C,,,=6-0).

Parkinson-Bouclin model. A model in which the structure and the fluid interact was
proposed in reference [10], which adapted to the case of the oscillating square prism a lift
oscillator model of the Hartlen-Currie type as follows:

C=C.+C,, (A4)
where C, satisfies the equation:
¢, + (non-linear term in C,) + (27n,)’C,—f(3) =0, (A5)

and the non-linear term and f(») are so chosen that, for y=0, C, has frequency n, and
amplitude C, equal to the mean vortex excitation lift coefficient for the stationary body.
(We note that in reference [10], n, and Cy are assumed to be independent of the angle of
attack.) A non-linear term that meets these requirements is

e(-C,+aC?), (A6)
where [33, pp. 128, 134]
a=(4/3)/(2nn,Cx)’. ’ (A7)

The term f(p) is included for the purpose of coupling equations (2) and (AS5). For
simplicity it was assumed in reference [10] that f(y)= 5y, although other choices are
possible [11]. The constants & and ¢ (as well as m,) are chosen by trial and error. Equation
(A6) may be non-dimensionalized by using 7 =2 and then dividing the equation through
by £22. The term given by equation (A6) then becomes £/2(C}+af2’C\’), and the term
éy becomes (6h/Q2)Y".

Dowell model. A similar model, developed for circular cylinders, was proposed in refer-
ence [13], where it was assumed that C, is the solution of the lift oscillator equation

&, + (non-linear term in C) + (27n)’C,+ B, (h/VH)y + (27n,)’CL=0, (A8)

where B, is an added mass coefficient, and the non-linear term has a form similar to that
of (or can have the same form as) equation (A6). Thus, for y=0, C, has frequency n, and
amplitude C,. The added mass effect is introduced through the term in j. The primary
motivation in reference [13] was to achieve a physically consistent model, in which the
coupling of equations (2) and (A8) occurs naturally through the terms in y and j of
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equation (A8), so that no arbitrary coupling term is needed. This model was tested success-
fully for circular cylinders in references {13, 34]. However, calculations showed that for
square cylinders the model needed to be modified.

All2. PROPOSED LIFT OSCILLATOR MODEL

Following Dowell, we seek a model in which the coupling between equation (2) and the
equation defining C, is natural. This can be accomplished if it is noted that for the
stationary square prism both the vortex-induced lift coefficient and the Strouhal number
depend upon the angle of attack y/V, (31, pp. 484, 486). For the interval y/V, of interest
in galloping problems (0<y/V,<0-3), the data of reference [31] are approximately consist- '
ent with the expressions

S(», §)=So+ Sy sin {SafSs+3/V.( N} (A9)
Cul(y, §) = co+ ey sin {cales— 3/ Vi y, M}, (A10)

where the constants S; and ¢; (j=0,1,...,3) depend on the turbulence intensity i; for
i=0-02, it follows from the data of reference [31] that So=0-125, §,~0-005, S;~8-976,
Sy~—0-175 and ¢u~0-925, ¢; ~0-475, c;~11-2, c30-14. Within a cycle, the largest devia-
tions of S from its average value are about £5%.

Our proposed lift model consists of equation (1 1) in which C, satisfies equation (Al11):

&+ £{—Cot (4/3)/127S(3, DIV(3, D) Cunl y, M/HFC} + (27n)*Co— 87 =0. (A1)

Since the presence of the variables y and y in equation (18) assures coupling with equation
(2) (via equations (A9), (A10)), we may assume that & =0, thus discarding the arbitrary
factor & in favor of realistic physical information on the behavior of the prism at rest. The
parameters that must be selected by the analyst are then m, and &. The proposed model
‘differs from the Parkinson-Bouclin model insofar as it incorporates the dependence on
angle of attack of the vortex-induced lift coefficient and Strouhal number for the stationary
prism.

The phase space dimension for the proposed lift oscillator modet is four, whereas for
the actual oscillator it is infinity. One could in principle write C, as follows:

C,=Y Cu (Al2)

(i=1,2,...,n), where C,; would be defined by equations similar to the equation for C,
in the preceding model, except that in these equations the lift coefficients and the frequen-
cies would correspond to the ordinates and frequencies of the spectral density of the lift
due to vortex shedding, and randomly selected phase angles would be added to the argu-
ments of C,;. This would increase the dimension of the phase space to 4(i+1).

APPENDIX I1I: NOMENCLATURE

A projected area of threaded rods

B, added mass coefficient in equation (A8)

¢ damping coefficient

Co, €15 C2, C3 constants in equation (A10)

Ca, Cacyr Caw overall drag coefficient in Morison equation, drag coefficient for
threaded rod, for wire, respectively

Co drag coefficient for square prism (equation (3))

C. galloping (self-excited) lift coefficient (equation (A2))

G total lift coefficient (equations (2, Al, A3, Ad))
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lift coefficient associated with vortex shedding excitation, lift
coefficients in equation (A12), lift coefficient for prism at rest,
respectively

lift coefficient in harmonic lift model (equation (A3))

diameter of threaded rod attached to prism end, and of drag wire,
respectively

differential operator for single oscillator (equation (2)), for top prism,
and for bottom prism, respectively

drag force on threaded rod attached to prism end, and on wire,
respectively

width of prism

total stiffness of single oscillator springs

effective stiffness (equation (3))

stiffness of top spring

stiffness of bottom spring

stiffness of coupling spring

Lyapounov exponent

length of prism

clear length of circular cylinder at prism end

total mass of single oscillator, of top oscillator, of bottom oscillator,
and added mass, respectively

mass of top, coupling, and bottom spring, respectively

oscillation frequency, and vortex shedding frequency, respectively
non-dimensional parameter in equation (6)

length of drag wire

Strouhal number, constants in equation (A9)

non-dimensional velocity, and effective non-dimensional velocity
(equation (6))

flow velocity, critical flow velocity beyond which lively chaos occurs
in actual system, critical flow velocity for which one attractor vanishes
in simplified numerical model, and effective flow velocity (equation
(4)), respectively

horizontal displacement

vertical displacement of single, of top, and of bottom oscillator, and
non-dimensional vertical displacement, respectively

quantity defined by equation (A7)

ratio of damping to critical damping

lift oscillator coupling parameter

constant

parameter in equation (A6) applicable to single oscillator, to top oscil-
lator, to bottom oscillator

fluid specific mass

parameters defined by equation (11)

(k/m)'”?, circular frequencies given by equation (10)



